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Equation of state and wave propagation in hysteretic nonlinear
elastic materials
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Abstract

Heterogeneous materials, such as rock, have extreme nonlinear elastic behavior (the coefficient
characterizing cubic anharmonicity is orders of magnitude greater than that of intact materials)
and striking hysteretic behavior (the stress-strain equation of state has discrete memory). A
model of these materials, taking their macroscopic elastic properties to result from many
mesoscopic hysteretic elastic units, is developed. The Priesach-Mayergoyz description of
hysteretic systems and effective medium theory are combined to find the quasistatic stress-strain
equation of state, the quasistatic modulus-stress relationship and the dynamic modulus-stress
relationship. Hysteresis with discrete memory is inherent in all three relationships. The dynamic
modulus-stress relationship is characterized and used as input to the equation of motion for
nonlinear elastic wave propagation. This equation of motion is examined for one-dimensional
propagation using a Green function method. The out-of-phase component of the dynamic
modulus is found to be responsible for the generation of odd harmonics and to determine the
amplitude of the nonlinear attenuation.

1Also at Department of Physics and Astronomy, University of Massachusetts, Amherst.

1



Introduction

The macroscopic elastic properties of highly het-
erogeneous materials, such as rock, are unusual and
much more complex than those of the materials from
which they are assembled. The velocity of sound c in
Berea sandstone is changed by a factor of two upon
raising the pressure P from 1 atm to 1000 atm [Bour-
bie et al., 1987]. A factor of two change in the velocity
of sound in SiO2, nominally the material from which
Berea sandstone is composed, requires a pressure in-
crease of order 105 atm [Ashcroft and Mermin, 1976].
Thus, equations of state for a typical rock, for ex-
ample, stress versus strain, show nonlinearity that is
orders of magnitude greater than that of conventional
materials [Aleshin et al., 1980; Meegan et al., 1993].
Further, these equations of state are often hysteretic
and possess memory features called discrete memory
or end point memory [Holcomb, 1981; Boitnott, 1992;
Gist, 1993].

The fundamental reason for the hysteretic nonlin-
ear elastic behavior of rock is that rock contains an
enormous variety of mesoscopic structural features
(for example, cracks, joints, and contacts, of typical
size ≈ 1µm) with elastic properties that are specific
to their structure. It is these mesoscopic elastic units
that dominate the response of the rock to both the
external pressure used to find a quasistatic equation
of state and to the internal pressure that accompanies
an elastic wave.

The purpose of this paper is to describe a theory
of the elastic behavior of hysteretic nonlinear materi-
als. We describe both the ambient state of the rock
and perturbations away from that state. In the next
section, we introduce the Priesach-Mayergoyz (P-M)
model of hysteretic systems [Priesach, 1935;Mayer-
goyz, 1985] and adapt it to describe the hysteretic
mesoscopic elastic units (HMEU) determining the
elastic properties of a rock. We combine the P-
M model for the behavior of the HMEU with ef-
fective medium theory (EMT) [Kirkpatrick, 1971] to
find the elastic response of a rock that has experi-
enced a specified pressure history. We discuss the
quasistatic stress-strain equation of state, the qua-
sistatic modulus-stress relationship and the dynamic
modulus-stress relationship. Next, we consider elas-
tic wave propagation in a hysteretic nonlinear elastic
material governed by a history dependent equation
of state. We examine one-dimensional propagation of
compressional waves. The equation of motion for the
longitudinal displacement field contains the hysteretic

nonlinear dynamic modulus. We solve the equation
of motion for the displacement field using the Green
function technique developed by McCall [1993]. This
solution lets us identify the qualitative features in har-
monic generation that are signatures of nonlinearity
and hysteresis. Finally, we extend the analysis to
the attenuation due to a hysteretic nonlinear dynamic
modulus.

Equation of State

We take a rock’s macroscopic elasticity to result
from a system of hysteretic mesoscopic elastic units
(HMEU). The connection between the HMEU and
an equation of state is made by combining a Priesach-
Mayergoyz (P-M) description of HMEU behavior with
effective medium theory (EMT). In this section, we
use a simple model for the HMEU to illustrate calcu-
lation of equations of state and discuss their proper-
ties.

Model the rock by a lattice of HMEU with lattice
spacing nominally 10 µm. To each HMEU we assign
two sets of parameters, a pair of pressures (Pc, Po),
Pc ≥ Po, and four elastic parameters (`c,Wc, `o,Wo).
The meaning of these parameters in terms of the be-
havior of the HMEU is illustrated in Figure 1. As-
sume for illustrative purposes that the structural fea-
tures we are describing with the HMEU are compliant
cracks. Then the subscript c stands for closed and the
subscript o stands for open. As the pressure applied
to the HMEU is raised from zero the HMEU responds
with spring constant Wo enforcing displacement `o.
At Pc the HMEU changes behavior and responds to
pressures above Pc by enforcing the displacement `c
with spring constant Wc. If the pressure is decreased
from above Pc the HMEU responds with (`c,Wc) until
the pressure reaches Po ≤ Pc, at which time it reverts
to (`o,Wo). Thus each HMEU has hysteretic elastic
behavior as a function of pressure. Since a 1 cm3 piece
of rock contains a vast number of structural features,
109–1015, this abstraction of is justified. The elastic
parameters (`c,Wc, `o,Wo) may have a deterministic
or statistical connection to (Pc, Po).

In Figure 2a we show pairs of (Pc, Po) in P-M
space. These pressure pairs were generated accord-
ing to the rule described below in Example 1. The
density of HMEU in the space of (Pc, Po) pairs, i.e.,
the number of elastic units in dPcdPo at (Pc, Po), is
ρ(Pc, Po). A pressure protocol brings the rock from
P = 0 to P 6= 0 with n pressure reversals. This his-
tory leads to a separation of P-M space into two parts
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bounded by the curve E(Pc, h) (see Figure 2a), where
h stands for the pressure history leading to the rock’s
current pressure state P . The pressure history of the
rock and E(Pc, h) depend on the points of pressure
reversal P1, . . . , Pn, the maximum pressure to which
the rock has been subjected Pmax and the current
pressure P . In Figure 2a the HMEU below and to
the left of E(Pc, h) are in their closed configuration;
the HMEU above and to the right of E(Pc, h) are in
their open configuration. A quasistatic equation of
state for the rock, e.g., a stress-strain relationship,
can be found from a variety of treatments of a lattice
of HMEU.

To calculate a stress-strain equation of state for
a particularly simple model of the HMEU we take
Wo = Wc and the same two values (`c, `o) for all
HMEU. Thus the rock is a binary mixture of springs,
each enforcing one of two separations according to
its configuration: open or closed. In all of the quan-
titative work below we use `c = 0.9 and `o = 1.0.
We treat this inhomogeneous system using effective
medium theory (EMT) as illustrated in Appendix A.
Independent of the particular geometry chosen for the
lattice of HMEU we find that the rock can be replaced
by a uniform system with springs that enforce a sep-
aration `, where ` is the average of `,

`[E] = `o + (`c − `o)Nc[E], (1)

where Nc is the fraction of closed elastic units. We
define the strain

ε[E] ≡ `[E]− `o
`o

=
`c − `o
`o

Nc[E]. (2)

The notation [E] stands for “functional of”; ` is
a functional of the state E. In this simple model
the equation of state is completely determined by
E(Pc, h).

If ρ(Pc, Po) is strictly diagonal,

ρ(Pc, Po) = A(Pc, Po)δ(Pc − Po), (3a)

the stress-strain equation of state has no hysteresis,
the individual HMEU have no hysteresis, and the rock
as a whole has no hysteresis. The area of a hysteresis
loop is related to the fraction of the density ρ(Pc, Po)
that is off the diagonal. A typical rock will have ρ of
the form

ρ(Pc, Po) = A(Pc, Po)δ(Pc − Po) + B(Pc, Po), (3b)

where B(Pc, Po) is the off-diagonal component of ρ.
Discrete memory in the number of open or closed

HMEU is a consequence of the structure of P-M space.
Discrete memory in the stress-strain equation of state
follows from (2).

Example 1

A set of 8000 points (Pc, Po) in P-M space were
generated according to the rule

Pc = 100r
1
3
c , (4a)

Po = 100Pcr
1
3
0 , (4b)

where rc and ro are random numbers uniformly dis-
tributed between 0 and 1. Representative points
found from this rule are shown in Figure 2a. The
rock modeled by this set of HMEU is carried through
the pressure protocol shown in Figure 2b in which the
pressure is raised and lowered three times. Values of
the pressure are in arbitrary units. At point A on the
pressure protocol the pressure history has included
four points of pressure reversal, denoted 1 . . .4. The
corresponding separation curve E(Pc, h) is shown on
Figure 2a. As the pressure advances beyond 80 a new
pressure regime is explored and the pressure rever-
sal points 1 . . .4 are erased. In Figure 2c, we show
stress as a function of the magnitude of strain appro-
priate to the P-M space in Figure 2a, the pressure
history in Figure 2b and (2). The hysteresis loops
are traversed in the clockwise direction. The qualita-
tive property of these hysteresis loops, that the strain
does not immediately release with a decrease in pres-
sure, results from the off diagonal part of ρ(Pc, Po).
Some of the elastic units that close upon advancing P
by ∆P do not reopen upon reducing the pressure by
∆P . Discrete memory is apparent in the stress-strain
curve. These stress-strain relations involve large, slow
changes in pressure. Thus we refer to them as the
quasistatic stress-strain equations of state.

Example 2

A set of 8000 points (Pc, Po) in P-M space were
generated according to the rule

Pc = 10 + 90rc, (5a)

Po = Pc(1− r2o), (5b)

where rc and ro are random numbers uniformly dis-
tributed between 0 and 1. Representative points
found from this rule are shown in Figure 3a. The rock
modeled by this set of HMEU is carried through the
pressure protocol shown in Figure 3b. This pressure
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protocol is similar to one used by Boitnott [1993] in
a study of hysteresis in the Youngs modulus of Berea
sandstone. In Figure 3c we show the stress-strain
curve appropriate to the P-M space in Figure 3a, the
pressure history in Figure 3b and (2). There are qual-
itative differences between the stress-strain curves in
Figures 2c and 3c that correlate with the P-M space
densities seen in Figures 2a and 3a. The approxi-
mate uniformity of values of Pc in Example 2 makes
the stress-strain relation almost linear with pressure
increase. The nonuniformity of values of Pc in Exam-
ple 1 leads to the strong nonlinear behavior seen in
Figure 2c as the pressure is increased.

The elastic modulus is defined in terms of the
stress-strain equation of state:

K =
∂σ

∂ε
. (6)

In Figure 3d, we show the modulus as a function of
stress, calculated from (6) and the stress-strain equa-
tion of state in Figure 3c. The modulus-stress equa-
tion of state has a bowtie appearance because of the
cusps at the end points of each stress-strain hystere-
sis loop. The modulus is discontinuous at these end
points. For all four hysteresis loops in Figure 3c, the
low P part of the equations of state are the same;
the HMEU opened and closed at low pressure are the
same for all four loops. These qualitative features
agree with the results of experimental investigations
[Boitnott, 1992].

Example 3

P-M space was filled in the same way as in Exam-
ple 2 (see Figure 3a). The rock is carried through the
pressure protocol shown in Figure 4a. This pressure
protocol takes the rock around a large hysteresis loop
with 18 small closed excursions along the way. The
stress-strain curve that results from the P-M space
in Figure 3a, the pressure protocol in Figure 4a and
(2) is shown in Figure 4b. Each of the small pres-
sure excursions generates a small hysteresis loop in
the interior of the large loop. If we calculate the elas-
tic modulus around a small loop using (6) we find
a bowtie shaped hysteresis loop just as for the large
loops of the previous examples. As a small loop gets
smaller, we may wish to study an average property of
the loop. We define the average modulus of a stress-
strain hysteresis loop to be the slope of the line con-
necting the lower cusp to the upper cusp. Since the
small loops are interior to the large loop, the average
modulus must be larger for small stress-strain loops

than for large stress-strain loops.

In Figure 4c we show the average modulus-stress
relationship for the seventeen loops labeled 1 . . . 17 in
Figure 4b. We imagine that the modulus appropri-
ate to the description of wave propagation is similar
to that derived from the small loops we see in Fig-
ure 4c. Thus we conclude that a modulus measured
dynamically will be larger than a modulus measured
quasistatically and would exhibit bowtie behavior if
the entire hysteresis loop were studied, rather than
its average value.

Note that small stress-strain loops on opposite
sides of the large stress-strain loop, but involving the
same pressure excursion have the same average modu-
lus. Thus, the average modulus as a function of ambi-
ent pressure has no hysteresis in our model up to this
point. The empirical fact is that both the stress-strain
equation of state and the average modulus-stress re-
lationship are hysteretic [Gist, 1993]. The model of
elastic response of a rock that we have developed to
this point gives one of these results but not the other.
So far the pressure that acts on the individual HMEU
is the external pressure on the system. Below we con-
sider a simple example in which the HMEU respond
to the average condition of the rock.

Example 4

A set of 8000 points (Pc, Po) were generated ac-
cording to the rule

Pc = 100rc, (7a)

Po = Pc(
1

2
+
Nc

2
)ro, (7b)

where rc and ro are random numbers uniformly dis-
tributed between 0 and 1. Equation (7b) is equiva-
lent to a mean field interaction between the HMEU
which makes the behavior of the individual HMEU
depend on the average condition of the rock. When
Nc = 0 the HMEU fill P-M space uniformly in the
wedge between the diagonal and π/8 below the di-
agonal. When Nc = 1 the HMEU fill P-M space
uniformly below the diagonal. In Figure 5a, the ini-
tial distribution of HMEU corresponding to P = 0,
Nc = 0 is shown with open squares; the distribution of
HMEU corresponding to P = 100, Nc = 1, is shown
with open circles. The rock is carried through the
pressure protocol in Figure 4a. The resulting stress-
strain equation of state is shown in Figure 5b. In
Figure 5c, we show the quasistatic modulus-stress re-
lationship derived from the slope of the large stress-
strain hysteresis loop and the average modulus-stress
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relationship derived from the small stress-strain hys-
teresis loops. The average modulus for small pressure
excursions, i.e., the equivalent of the average dynamic
modulus, is always greater than the quasistatic modu-
lus at the same pressure. The average modulus-stress
relationship is hysteretic but continuous at its ends,
in contrast to the quasistatic modulus-stress relation-
ship. Both measures of modulus versus stress have
end point memory.

Finally, we characterize a dynamic modulus of a
small hysteresis loop in terms of its components in
phase and out of phase with the pressure. Take loop
number 6 in Figure 5b as a concrete example. The
modulus-stress relationship for this hysteresis loop is
shown in Figure 6a. As the pressure evolves from 40
to 30 to 40, a bowtie is traversed from upper right to
lower left to upper left to lower right. In Figure 6b we
show the pressure and modulus as a function of time
for 20 values of time. If we take this time evolution
to be the time evolution characteristic of one pressure
cycle, we can use the modulus shown here in studies
of elastic wave propagation. This modulus is made up
of two parts: a part that is in phase with the pressure
variation, and a part that is out of phase with the
pressure. These two parts can be written

Keven(t) =
1

2
(K(t) +K(−t)), (8a)

Kodd(t) =
1

2
(K(t)−K(−t)), (8b)

where K is the modulus. The even and odd parts of
K are shown in Figures 6c along with a horizontal line
marking the average dynamic modulus for this loop.
The odd part of the modulus is due to hysteresis.

Elastic Wave Propagation

In this section we apply a Green function formalism
developed in McCall [1993] to describe elastic wave
propagation in rock. We wish to focus on the conse-
quences of hysteresis and will therefore limit ourselves
to the propagation of compressional waves in a single
dimension.

We take the equation of motion for the displace-
ment field in a rock at pressure P to be

∂2u

∂t2
=

1

ρ

∂

∂x

{
K [1 + α(x, t)]

∂u

∂x

}
+ S(x), (9)

where u is the x-component of the displacement field,
ρ is the (constant) rock density, K is the average dy-
namic modulus at P , α describes the departure of the

modulus from K [
∫
α(x, t)dt = 0 over one pressure cy-

cle], and S(x) is the external source that drives the
system. The departure from constant modulus α(x, t)
is a functional of the pressure or the displacement
field:

α(x, t) = α[u(x, t)] = α[δP (x, t)], (10)

where

δP (x, t) = −K ∂u(x, t)

∂x
. (11)

Using the Green function method, we develop a
systematic treatment of (9) without initially specify-
ing α(x, t) as follows:

(1) Specify the external disturbance.

(2) Find the Green function g(x, x′, ω) for the lin-
ear problem, α(x, t) = 0, and the specific geometry to
be studied. This problem may include attenuation.

(3) Develop u(x, t) and α(x, t) in powers of the
strength of the source S.

Details of this procedure, such as how to include at-
tenuation, are found in McCall [1993]. For the leading
correction due to α(x, t) to the displacement field u0

one finds

u1(x, ω) =

∫
dx′

∫
dω′

2π
g(x, x′, ω)

∂

∂x′

[
α0(x

′, ω′)
∂u0(x

′, φ)

∂x′

]
, (12)

where φ = ω − ω′, α0(x,ω) = α[u0(x,ω)] and u0 is

u0(x, ω) =

∫
dx′g(x, x′, ω)S(x′, ω). (13)

The traditional way of treating nonlinearity in the
equation of motion of an elastic wave is to develop
the strain energy as an analytic function of the dis-
placement field u(x, t) [Murnaghan, 1951; Landau and
Lifshitz, 1959]. For hysteretic materials such as rocks,
we showed that pressure cycles, even the pressure cy-
cles that accompany an elastic wave, cause a change
in the elastic modulus that is not an analytic func-
tion of u(x, t) or δP (x, t). The P-M space and EMT
model lets us assess the effect on the modulus of
fluctuations in E(Pc, h) brought about by δP . For
u0 = U sin(k0x− ω0t) and δP0 given by (11), we can
represent α(x, t) in the form of a Fourier series in
τ = k0x− ω0t:

α0(x, t) =
a0

2
+

∞∑

n=1

an cosnτ +

∞∑

n=1

bn sin nτ, (14)
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where the an are the amplitudes of the in-phase part
of the modulus and the bn are the amplitudes of the
out-of-phase part of the modulus (see Figure 6c). The
amplitudes an and bn are proportional to δP0. We
have chosen K so that a0 = 0.

Using the Green function for an infinite, homo-
geneous material, and carrying through the algebra
called for by (12), we find the perturbation displace-
ment u1(x, t) is

u1(x, t) = −k0Ux

2
cos τ

∞∑

n=1

cn cos(nτ − φn), (15)

where cn =
√
a2
n + b2n and tanφn = bn/an.

By writing α0 as a Fourier series in (14), we have
the flexibility to look at the traditional cubic anhar-
monic description of nonlinearity as well as extreme
cases of non-analytic nonlinearity. However, inde-
pendent of the precise nature of the nonlinear pro-
cess there are several observations of general validity
about u1(x, t).

(1) The amplitude at distance x from the source is
proportional to x, independent of the precise choice of
α0(x, t). This proportionality represents the fact that
nonlinear elastic waves interact in the system over the
entire range between source and observer.

(2) The amplitude is proportional to (k0U )2. The
first factor of k0U comes from the elastic wave inci-
dent on the scattering amplitude. The second factor
comes about because the amplitudes an and bn are
proportional to the pressure fluctuation, i.e., to k0U .

(3) Hysteresis which is responsible for the out of
phase part of α, i.e., the bn terms in the Fourier series,
exhibits itself in the phase of the scattered wave that
is seen by the observer.

Let us look at several examples to appreciate the
content of (15).

Standard Cubic Anharmonicity

Take
α0(x, t) = βk0U cos τ. (16)

This choice of α0 vs δP is equivalent to setting an =
βk0Uδn,1 and bn = 0 in (14). Then u1 in (15) is the
well known result

u1(x, t) = −β(k0U)2x

4
[cos 2τ + 1] . (17)

Entirely Hysteretic Anharmonicity

Take
α0(x, t) = γk0U sin 2τ. (18)

In this case, an = 0 and bn = γk0Uδn,2. For u1 we
find

u1(x, t) = −γ(k0U)2x

4
(sin 3τ + sin τ) . (19)

Note the phase difference between these two results.
The elastic wave response to a hysteretic nonlinearity
is 90◦ out of phase with the response to a nonhys-
teretic nonlinearity.

A Bow Tie

In Appendix B we give a simple analytic descrip-
tion of a bowtie modulus. Using the result at the end
of Appendix B we write

α0(x, t) = C cos τ, 0 ≤ τ ≤ π (20a)

α0(x, t) = −C cos τ, π ≤ τ ≤ 2π, (20b)

where C = ηK0k0U/Pmax and η, K0 and Pmax are
defined in Appendix B. Because of the odd symmetry
about τ = π all of the an are zero, bn = 0 for n =
1, 3, . . ., and bn = 4Cn/[π(n2 − 1) for n = 2,4, . . ..
Thus b2, b4, b6, . . . are in the ratio 1,0.4000, 0.2571, . . .
making the bowtie the same as for the example above
in leading approximation. Note that the bowtie-like
character of the modulus leads to odd harmonics in
the displacement u1 given by (15).

The Bowtie in Figure 6a

In Table 1 we show the amplitudes a0 . . . a9 and
b1 . . . b9 of the Fourier representation, (14), of the
small loop modulus in Figure 6a. It is apparent from
the Table that the n = 2 in- and out-of-phase am-
plitudes are relatively large. In general the even har-
monics have amplitude much greater than the odd
harmonics. In the analytic model of a bowtie the
odd harmonics had zero amplitude. The correspond-
ing amplitudes c1 . . . c9 and the phase angles φ1 . . . φ9

from (15) are also shown. From these amplitudes and
phase angles we can construct u1(x, t) according to
(15).

Energy Loss; Q

In the previous section, we describe elastic wave
propagation in a hysteretic, nonlinear elastic system
brought to an elastic state by a prescribed pressure
protocol. An important element in the calculation
was the hysteretic component of the elastic response,
that is, the component of α(x, t) in (9) that is out
of phase with the pressure. This part of α(x, t) is
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described by the bn terms in (14) and contributes to
the attenuation. We define Q by

1

Q
=

∆E

E
, (21)

where ∆E is the energy loss per cycle and E is the
average energy in the wave during a cycle. For ∆E
we take

∆E =

∮
σdε, (22)

where
∮

stands for integration over one cycle in time,
σ is the effective stress found from the first term on
the right hand side of (9),

σ = K [1 + α(x, t)]
∂u

∂x
. (23)

We develop ∆E as a series in the strength of the
nonlinearity in direct analogy with the method of so-
lution to (9) in McCall [1993]. We find to first order
that ∆E = ∆E0 + ∆E1, where ∆E0 is the contri-
bution to the energy loss due to the linear elastic re-
sponse of the system and

∆E1 = c20

∮
α(x, t)

∂u0

∂x

∂u̇0

∂x
dt, (24)

where c20 = K/ρ0. Using u0 = U sin τ , where τ =
k0x− ω0t, we have

∂u0

∂x

∂u̇0

∂x
=

1

2
ω0(k0U)

2
sin 2τ . (25)

The integral around a cycle in time picks out the term
in α(x, t) that is proportional to sin 2τ . Thus it is the
amplitude b2 of the out-of-phase component of the
nonlinear elasticity that is responsible for the attenu-
ation. We have

1

Q
− 1

Q0
∝ b2. (26)

where Q−1 = ∆E/E, Q−1
0 = ∆E0/E and E =

ρc20 (k0U)
2
.

Recall that b2 ∝ δP0 ∝ k0U . The hysteretic part of
the nonlinear elasticity is responsible for the nonlin-
ear attenuation. The coefficient b2 is a measure of the
size of this nonlinear attenuation [Day et al., 1993].
In the work of Day and Minster [1984], nonlinear at-
tenuation Q is found to be the cause of hysteresis.
Here, in contrast, we find hysteresis to be the cause
of nonlinear attenuation.

Conclusions

In this paper we have sketched a theoretical de-
scription of elastic behavior in hysteretic nonlinear
material. We modeled the elastic material, a rock,
by assuming its macroscopic properties are due to a
large number of hysteretic mesoscopic elastic units
(HMEU). To obtain the elastic equations of state
we combined the Priesach-Mayergoyz (P-M) descrip-
tion of a set of HMEU with effective medium theory
(EMT). This treatment emphasizes the importance
of pressure history in the determination of the elastic
state of a rock. The connection between the density
of HMEU in P-M space ρ(Pc, Po) and qualitative fea-
tures of the stress-strain equation of state, the qua-
sistatic modulus-stress relationship and the dynamic
modulus-stress relationship were illustrated with four
examples.

The qualitative features seen in the quasistatic
modulus-stress relationship are also present in the
small amplitude pressure cycles that accompany prop-
agation of an elastic wave. Thus a hysteretic nonlin-
ear dynamic modulus is input to the description of
elastic wave propagation in a rock. We employed a
Green function method to study the equation of mo-
tion of the longitudinal displacement field in the pres-
ence of such a modulus. This method let us develop
a systematic hierarchy of equations for the displace-
ment field. We described the behavior of the dis-
placement field for a series of examples. Finally, we
described the connection between hysteretic nonlinear
elasticity and the nonlinear attenuation.

This theoretical description of elastic behavior in
hysteretic nonlinear elastic material gives us most
rock properties, independent of a particular model of
mesoscopic structural features:

(a) a hysteretic quasi-static stress-strain equation
of state with end point memory,

(b) a quasistatic modulus-stress relationship in the
form of a bowtie,

(c) a hysteretic dynamic modulus-stress relation-
ship with end point memory

(d) a description of elastic wave propagation, using
the dynamic modulus-stress relationship, that leads
to copious production of odd harmonics

(e) a connection between the strength of the non-
linear attenuation and the strength of odd harmonic
production.

We close this section with a series of remarks about
the theoretical model. (1) We have found items
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(a). . .(e) above by forward modeling. The P-M space
description of the HMEU may be used in conjunc-
tion with experimental measurements to do the in-
verse problem and learn about the structural features
in a rock. (2) Among the issues which must be consid-
ered when comparing measurements to the theoreti-
cal model are: (a) are effective medium theory and
mean field theory adequate, and (b) what model of
the HMEU is most appropriate? (3) We have only
touched on the relationship between Q and nonlinear
attenuation. We plan to return to this phenomena
in the context of specific HMEU models in the im-
mediate future. (4) We have discussed the equations
of state using a particularly simple abstraction of the
properties of the structural features. More elaborate
modeling is possible and tractable. That such a treat-
ment will work is clear from the nice series of papers
by Holcomb [1981] in which a description qualitatively
equivalent to the P-M space description is validated.
(5) The elastic state of a rock is not solely determined
by its pressure history. The behavior of the HMEU
is strongly influenced by the saturation history of the
sample. Filling and emptying fluid from a pore system
is itself a history dependent phenomena that can be
described using the P-M space picture [Smith et al.,
1987; Guyer, 1993]. (6) For a pressure fluctuation as-
sociated with an acoustic disturbance, the time scale
is 10−2–10−6 sec. For a pressure fluctuation associ-
ated with a quasistatic measurement [Boitnott, 1992;
Gist, 1993], the time scale is 1–10 sec. The hysteretic
response of a system may well depend on time scale
[Brennan, 1981]. We have made no attempt to add
this frequency dependence to our model. However, it
is straightforward to model a system of HMEU with
frequency dependent response and the P-M space de-
scription lends itself naturally to this.

Our treatment of the elastic equation of state
and of elastic wave propagation have general valid-
ity. However, we have deliberately used a sequence
of approximations that let us show the content of the
model with a minimum of computational complex-
ity. These approximations and simplifications are not
required, we can move away from them when our un-
derstanding of the mesoscopic structure of the system
becomes firmer or when we adopt specific models of
the HMEU.

Appendix A: Effective Medium Theory

Model a system of elastic units as a lattice of
masses connected by springs. Nearest neighbor masses

i and j are at positions xi and xj. The spring be-

tween masses i and j is characterized by an equilib-
rium length `ij and a spring constant Γij . Assume the
motion of each mass is influenced only by its nearest
neighbors. Then the potential energy of the system
of elastic units is

V =
∑

i

∑

j

1

2
Γij (|~xi − ~xj| − `ij)

2
, (A1)

where Γij is zero for non-near neighbor pairs i and
j. Choose the elastic constants Γij = Γ for all near
neighbor pairs and the equilibrium length enforced by
the springs `ij = ` for all springs except the spring
between masses 0 and 1. For the spring from 0 to 1
the equilibrium length a is enforced. Thus we write
V in the form

V =
∑

i

∑

j

[vij + (δi,0δj,1 + δi,1δj,0) (w01 − v01)] ,

(A2)
where vij is the potential energy of a spring enforcing
length ` and wij is the potential energy for a spring
enforcing length a.

Assuming that |a− `| ¿ `, the equation of motion
for the x component of the position of mass k away
from its equilibrium position is

mẍk = −
∑

j

[
∂

∂xk
(vjk + vkj)

−2 (δk,0δj,1 − δk,1δj,0) Γ (` − a)] .(A3)

We require that when xi is averaged over the distri-
bution of a that 〈xi〉 = 0. Thus we must have

` = 〈a〉. (A4)

This result is independent of the precise geometry of
the uniform system in which the spring of length a is
embedded.

Appendix B: Bowtie Modulus

Consider the case in which the pressure has been
raised monotonically to pressure P1 and the density
in P-M space near the diagonal is constant,

ρ(Pc, Po) = Aδ(Pc − Po) + B, (B5)

where A and B characterize the P-M space density
near pressure P1. Reduce the pressure P a small
amount to P2 and then raise it again, following the
number closed Nc along both paths (down and up).
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At pressure P , where P2 ≤ P ≤ P1, the changes in
the number of closed units are

∆Nc(↓) = A(P − P1)− B
(P − P1)

2

2
, (B6a)

∆Nc(↑) = A(P − P2) + B
(P − P2)

2

2
. (B6b)

The corresponding strains are

ε(↓) = ε1 +
`c − `o
`o

[
A(P − P1)− B

(P − P1)
2

2

]
,

(B7a)

ε(↑) = ε2 +
bc − bo
bo

[
A(P − P2) + B

(P − P2)
2

2

]
,

(B7b)
where ε1 is the strain at P1 and ε2 is the strain at
P = P2.

The inverse of the modulus is given by (6):

1

K
= − ∂ε

∂P
. (B8)

For the strains of (B7a) and (B7b)

K(↓) =
K0

1− λ δp
, (B9a)

K(↑) =
K0

1 + λ δp
, (B9b)

where

K0 =
2`o

(`o − `c)[2A + B(P1 − P2)]
, (B10)

λ =
2BP0

2A + B(P1 − P2)
, (B11)

δp =
P − P0

P0
, (B12)

and P0 = (P1 + P2)/2.

Suppose that the stress-strain equation of state is
hysteretic up to pressure Pmax, that a fraction f of
the HMEU are on the diagonal and that the HMEU
that are off the diagonal, 1 − f , fill all of P-M space
uniformly. Then we have

A =
f√

2Pmax

, B =
2(1 − f)

P 2
max

. (B13)

As P1 − P2 → 0,

λδp ≈ η
(P − P0)

Pmax
, (B14)

where η = 2
√

2(1 − f)/f . Since P − P0 ¿ Pmax, we
have

K(↓)
K0

= 1 + η
P − P0

Pmax
, (B15a)

K(↑)
K0

= 1− η
P − P0

Pmax
. (B15b)

The nonlinear part of the modulus is a simple bowtie.

Finally we make a crude estimate of the nonlinear
coefficient β defined by

K

K0
= 1 + β

∂u

∂x
. (B16)

Using P − P0 = −K0∂u/∂x we find

|β| ≈ η
K0

Pmax
≈ 1000 (B17)

for K0 ≈ 5× 1011 dyne/cm2, Pmax ≈ 5000 atm and
η ≈ 10.
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Figure 1. A hysteretic mesoscopic elastic unit (HMEU). A HMEU is characterized by a pair of pressures (Pc, Po)
and two pairs of elastic parameters (`o,Wo) and (`c,Wc). At low pressure the elastic constant of the HMEU Wo

enforces displacement `o. Upon raising the pressure to Pc, the elastic constant of the HMEU becomes Wc and the
displacement `c is enforced. The elastic parameters remains (`c,Wc) until the pressure is reduced to below Po.

Figure 2. Elastic equation of state, Example 1. (a) The points (Pc, Po) in P-M space; 500 points generated from
(4a) and (4b) are shown. The heavy curve corresponds to E(Pc, h) for the pressure protocol at point A in (b). (b)
The pressure history followed in constructing the equation of state. Points 1, . . . ,5 are points of pressure reversal.
(c) The stress-strain equation of state appropriate to (a), (b) and (2).

Figure 3. Elastic equation of state, example 2. (a) The points (Pc, Po) in P-M space; 500 points generated from
(5a) and (5b) are shown. (b) The pressure protocol. (c) The stress-strain equation of state appropriate to (a),
(b) and (2). (d) The elastic modulus as a function of stress from (6). The points of pressure reversal are labeled
1, . . . , 4 on (b), (c) and (d).

Figure 4. Elastic equation of state, example 3. The P-M space is filled as in Figure 3a. (a) The pressure protocol.
The pressure goes from 0 to 100 in steps of 10 with a pressure reversal at 10, 20, . . . ,100. A similar procedure is
followed as the pressure goes from 100 to 0. (b) The stress-strain equation of state appropriate to the P-M space
of Figure 3a, (a) and (2). The large hysteresis loop and the small hysteresis loops are all traversed clockwise. (c)
The average modulus as a function of stress for the interior loops labeled 1, . . . , 17 in (b).

Figure 5. Elastic equation of state, example 4. (a) The points (Pc, Po) in P-M space; 500 points generated from
(7a) and (7b) are shown. The open squares are for P = 0, Nc = 0; the open circles are for P = 100, Nc = 1. (b)
The stress-strain equation of state for (a), the pressure protocol in Figure 4a and (2). (c) The elastic modulus of
the large loop (open circles) and the average modulus of the small loops (closed circles) as a function of stress.

Figure 6. Analysis of a bowtie. (a) The modulus as a function of stress for loop 6 in Figure 5b for 20 points on
the stress-strain curve. (b) The pressure and modulus as a function of time. (c) The part of the modulus that is
in phase with the pressure from (8a) and the part of the modulus that is out of phase with the pressure from (8b)
as a function of time.
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Table 1. Fourier Coefficients for a Modulus Bowtie

n an bn cn φn

0 2458. 0 0 0
1 67.41 12.03 68.47 10.12
2 1031. 1238. 1611. 50.23
3 -120.7 -5.897 120.9 2.796
4 187.1 1616. 1626. 83.39
5 59.24 -110.0 124.9 -61.69
6 -642.5 1215. 1374. -62.12
7 -17.23 64.31 66.58 -75.00
8 -1220. 729.2 1422. -30.86
9 -24.44 105.1 107.9 -76.91
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